Using Custom Transportation Data Collection Software with Handheld Computers for Education, Research, and Practice

Transportation Research Board Conference
January 10, 2005

Chris Monsere, Ph.D., P.E.
Research Assistant Professor
Portland State University
Department of Civil and Environmental Engineering
monsere@pdx.edu
Co authors: Robert L. Bertini, Andrew Byrd, Michael Rose, Tarek Abou El-Seoud
Outline

- Goals
- Requirements
- Data Collection Scenarios
- Solutions
- Applications
- Conclusions
- Next Steps
Goals

- Facilitate data collection for research
- Incorporate the data collection process into the classroom and laboratory
- Give students first-hand experience collecting data
- Teach lessons about data quality, data accuracy, and time and expense
Requirements

- Make use of commodity hardware
- Emphasize portability
- Low equipment cost
- Encourage exploratory learning
Data Collection Scenarios

- Recording location in one, two, or three dimensions over time
- Association of features with geographic locations
- Recording the occurrence of individual events at a specific point over time
Solutions

- Considered laptops
- PalmOS handheld computers as platform
 - Equipped with GPS receiver
- Open source software
- Two separate software packages
 - ITS-GPS
 - ITS-Count
- Cost per unit of $100-$300
ITS-GPS: Location and Time Based Data

- Handles recording location over time and associating features with geographic coordinates
- Uses a GPS receiver as its main data source
 - Point and continuous features
ITS-Count: Count and Classification Data

- Deals with counting different classes of events at a single point over time
Data Retrieval

Windows application used to retrieve data from handheld computers as CSV, DBF, or GIS Shapefile

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Elapsed</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Continuous</th>
<th>Speed</th>
<th>Distance</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003.11.01</td>
<td>21:49:33</td>
<td>3</td>
<td>45 41576</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>1.660396</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:49:36</td>
<td>3</td>
<td>45 41571</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.189727</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:49:38</td>
<td>3</td>
<td>45 41566</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>5.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:49:42</td>
<td>3</td>
<td>45 41561</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>5.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:49:45</td>
<td>3</td>
<td>45 41567</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.066998</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:49:46</td>
<td>3</td>
<td>45 41562</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.066998</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:49:51</td>
<td>3</td>
<td>45 41548</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.056995</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:49:54</td>
<td>3</td>
<td>45 41543</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.056995</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:49:57</td>
<td>3</td>
<td>45 41530</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:00</td>
<td>3</td>
<td>45 41533</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:03</td>
<td>3</td>
<td>45 41526</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:06</td>
<td>3</td>
<td>45 41524</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:08</td>
<td>3</td>
<td>45 41519</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:12</td>
<td>3</td>
<td>45 41515</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:15</td>
<td>3</td>
<td>45 41511</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:18</td>
<td>3</td>
<td>45 41508</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:21</td>
<td>3</td>
<td>45 41502</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:24</td>
<td>3</td>
<td>45 41498</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:27</td>
<td>3</td>
<td>45 41496</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:30</td>
<td>3</td>
<td>45 41495</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:33</td>
<td>3</td>
<td>45 41491</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:36</td>
<td>3</td>
<td>45 41487</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:39</td>
<td>3</td>
<td>45 41483</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>4.003089</td>
</tr>
<tr>
<td>2003.11.01</td>
<td>21:50:42</td>
<td>3</td>
<td>45 41481</td>
<td>-122.631</td>
<td>Sidewalk</td>
<td>0</td>
<td>0</td>
<td>2.566019</td>
</tr>
</tbody>
</table>
Application 1:
Cumulative Passenger Vehicle Counts for Undergraduate Assignment

- Students recorded vehicle count data at signalized intersection approach
Educational Results

- **Final exam question**
 - How would you measure saturation flow?
- **Overall, student performance on the question was very poor**
- **4 students using ITS-Count scored approximately 38% higher, with an average of 63%**
Application 2: Sidewalk Data Collection

- Continuous feature logging used to record the presence of sidewalks
- Analysis with roads, tax lots, and transit stops
Application 3: Travel Time Research at the ITS Lab

- Probe vehicles deployed to validate the license-plate matching Frontier Travel Time system
- Bus dispatch system (BDS) data from Portland transit agency (TriMet) compared with ITS-GPS data from probe vehicles to predict arterial travel times
Application 3:
Probe Vehicle Trajectories for Arterial Travel Time Study
Application 4:
Travel Time Study by Practicing Professional

- DKS Associates traffic study in Sherwood, OR
- Also light rail speed profiles in Tacoma, WA
Additional Application
Conclusions

- Project resulted in creation of two software packages for PalmOS handheld computers
- Education, research, and professional data collection facilitated
- Small size, low cost, ease of use
- Transportation concepts reinforced by student use
Next Steps

- ITS-Count upgrade allows recording up to five categories simultaneously
- ITS-GPS code streamlined for responsiveness
- Java-based retrieval program in development for cross-platform use
- Custom version of ITS-GPS created for bicycle transportation surveys
Acknowledgements

- Dustin Luther of DKS Associates
- Peter Koonce of Kittelson & Associates
- Oregon Engineering Technology Industry Council (ETIC)
- Department of Civil and Environmental Engineering at Portland State University
- National Science Foundation
Feedback

- Please let us know about any additional features or updates that you would find useful.
- The software is available from our website and source code is available upon request.

Contact us:
monsere@pdx.edu or bertini@pdx.edu
www.its.pdx.edu