Using Hardware-in-the-Loop Simulation to Evaluate Signal Control Strategies for Transit Signal Priority

Christopher A. Pangilinan
Portland State University
Massachusetts Institute of Technology
84th Annual Meeting of the Transportation Research Board
Washington, D.C. • January 10, 2004
Acknowledgments

- Dave Crout of TriMet
- Willie Rotich, Paul Zebell, Bill Kloos of the City of Portland
- Kiel Ova of PTV America
- Zhen Li of the University of Idaho
- Peter Koonce, Karen Giese, and Selman Altun of Kittelson and Associates
- Dr. Robert Bertini, Matt Lasky, Matt Dorado, and Neil Byrne of Portland State University
Outline

- Introduction
- Objective
- Study Design
- Test Scenarios
- Results
- Conclusions
- Future Research
Introduction

- Transit Signal Priority Concept

- Smart bus knows location and schedule status
- Bus communicates priority request to signal
- Local controller provides priority
Tri-Met Buses

- The “Smart Bus”

PCMIA Card

Control Head

Schedule deviation
Call for TSP
TSP in Portland, OR

- Conditional Priority with TriMet’s Bus Dispatch System
Priority Framework

Green Extension

Conditional Priority Framework

Red Truncation

1. Is bus within the City of Portland?
 - Yes
 - No

2. Is the bus on its proper route?
 - Yes
 - No

3. Are the bus doors closed?
 - Yes
 - No

4. Has the request already been sent?
 - Yes
 - No

5. Is the bus on schedule?
 - Yes
 - No

6. Is the bus behind schedule?
 - Yes
 - No

Request Priority

Priority Disabled
Objective

• Examine relationship between Transit Signal Priority and bus stop location
• Explore concept of hardware-in-the-loop simulation

Measures of Effectiveness:

• Bus Travel Times
• Bus Intersection Delays
• Side Street Delays
Study Design

Model a single intersection

N. Killingsworth at N. Albina
Study Design

- VISSIM 3.70
- Model 170E Signal Controller
- NIATT Controller Interface Device
- “Hardware-in-the-loop” simulation
Study Design

- TSP Detection Range = 500’
- 12 minute one-way headways
- Dwell times of 20-40 seconds
- 70 second cycle time
 - 31 green, 3 amber, 1 AR

>

- Green Extension: + 12 seconds
- Red Truncation: - 12 seconds

<table>
<thead>
<tr>
<th>Phase</th>
<th>Volume (veh/hr)</th>
<th>Thru</th>
<th>Right</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 NB</td>
<td>500</td>
<td>70%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>4 EB</td>
<td>500</td>
<td>85%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>6 SB</td>
<td>500</td>
<td>50%</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>8 WB</td>
<td>500</td>
<td>80%</td>
<td>15%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Test Scenarios

Far Side Transit Stops

<table>
<thead>
<tr>
<th></th>
<th>TSP</th>
<th>No TSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near Side Stop</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Far Side Stop</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Near Side Transit Stops
Study Design

- 25-hour real-time simulation runs for each scenario, 2 runs per scenario

- Aggregate data every hour (50 samples)
 - Vehicle/Person delay
 - Travel Times
 - Queue Lengths
 - Much More…
Example: Without TSP
Example: With TSP
Results

Travel Times

<table>
<thead>
<tr>
<th></th>
<th>NearSide without TSP</th>
<th>FarSide without TSP</th>
<th>NearSide with TSP</th>
<th>FarSide with TSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Bus Travel Time (Sec.)</td>
<td>79.1</td>
<td>76.8</td>
<td>84.1</td>
<td>68.3</td>
</tr>
</tbody>
</table>

• Far Side Bus Stops: 11% travel time reduction

• Near Side Bus Stops: 6% travel time increase
Results

Intersection Delay

<table>
<thead>
<tr>
<th>Bus</th>
<th>NearSide W/o TSP Delay (s)</th>
<th>NearSide w/ TSP Delay (s)</th>
<th>Overall Delay Savings (s)</th>
<th>FarSide w/o TSP Delay (s)</th>
<th>FarSide w/ TSP Delay (s)</th>
<th>Overall Delay Savings (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average (NB/SB)</td>
<td>27.6</td>
<td>32.5</td>
<td>+4.9</td>
<td>25.2</td>
<td>16.7</td>
<td>-8.5</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>5.34</td>
<td>5.56</td>
<td></td>
<td>5.18</td>
<td>2.05</td>
<td></td>
</tr>
</tbody>
</table>

- **Far Side Bus Stops:** 33% delay savings
- **Near Side Bus Stops:** 18% delay *increase*
Results

Side Street Delays

<table>
<thead>
<tr>
<th>Side Street</th>
<th>NearSide Delay (s)</th>
<th>Overall Delay Change (s)</th>
<th>FarSide Delay (s)</th>
<th>Overall Delay Change (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w/o TSP</td>
<td>w/ TSP</td>
<td>w/o TSP</td>
<td>w/ TSP</td>
</tr>
<tr>
<td>EB</td>
<td>17.8</td>
<td>21.1</td>
<td>+3.3</td>
<td>17.1</td>
</tr>
<tr>
<td>WB</td>
<td>16.2</td>
<td>18.4</td>
<td>+2.2</td>
<td>16.6</td>
</tr>
<tr>
<td>Average</td>
<td>17.0</td>
<td>19.7</td>
<td>+2.7</td>
<td>16.8</td>
</tr>
</tbody>
</table>

- Minimal delays on side street (non-transit street)
Results

Stop Utilization

0%, 25%, 50%, 75%, 100%
Near Side and Far Side results are similar with 0% stoppage
- Near Side reacts as if it was a Far Side stop
- Near Side delay reductions decrease with higher utilization
- Far side receives benefits regardless of stoppage
Travel Time

- Near Side travel time reduction occurs in every scenario EXCEPT 100% stoppage.
- Far side receives travel time reduction for all scenarios.
- Far Side results have better consistency with TSP.
- Unpredictability of dwell time for Near Side can make call for TSP ineffective.
Conclusions and Future Research

Conclusions

- With no Transit Signal Priority, bus stop location has a negligible effect on delays and travel times.
- With Transit Signal Priority AND a very high stop utilization, far side stops are clearly beneficial.
- Minimal increase in side street delay with short cycle length (70 seconds) and modest volume to capacity ratios.

Future

- Effect of detection length
- Different Transit Signal Priority plans (i.e. no green extensions)
- Traffic volumes
For More Information

http://www.its.pdx.edu/tsp.html

Thank You!