Access to Destinations:
Rethinking the Transportation Future of our Region

CONGESTION AND ITS EXTENT

Robert L. Bertini
Department of Civil & Environmental Engineering
Nohad A. Toulan School of Urban Studies & Planning
Portland State University
Objectives

“You’re not stuck in a traffic jam, you are the jam!” – German public transport campaign

- How is traffic congestion in metropolitan areas defined?
- How is congestion measured?
- How reliable and accurate are such measures?
- How has congestion and its perception been changing over the past several decades?
ANCIENT ROME

Julius Caesar: Regulations to limit carriage travel.
Historical Framework

LONDON

17th Century: regulations to control standing coaches.

1830’s: Monetary value for congestion.
Historical Framework

NEW YORK

1867: William P. Eno’s first traffic jam on Broadway.

1910: Word “jam” first used to describe automotive congestion, Saturday Evening Post.
Congestion

- Impacts people and freight
- 2002 “wasted” $63.2 billion
- Affects travel decisions
- Background 1980-2000
 - More passenger car travel (VMT +44%)
 - More vehicles (+39%)
 - Not much more lane mileage (+2%)
 - More population (+24%)
 - Real GDP (+90%)
- No absolute definition (relative)
- Measurement problems
Survey to Frame Issues

- On-line survey of transportation professionals & academics.
- 480 responses.
Definition of Congestion

How Is Congestion Defined? (n=557)

- Time: 18%
- Speed: 28%
- Vol: 19%
- LOS: 15%
- Cycle Failure: 16%
- Other: 4%

[Image of a congestion diagram showing the distribution of factors affecting congestion.]
Definition of Congestion

How Is Congestion Defined? (n=557)

- **Time**
- **Point**
 - Volume
 - Time Mean Speed
- **Spatial**
 - Density
 - Travel Time
 - Space Mean Speed

- Cycle Failure 16%
- LOS 15%
- Vol 19%
- Speed 28%
- Time 18%
- Other 4%
Definition of Congestion

How Is Congestion Defined? (n=557)

- “Must be able to define it.”
- “Anything below the posted speed limit.”
- “Below a speed threshold.”
- “A perception.”
- “I know it when I see it.”
- “Should be judged by commonly accepted community standards.”
Measurement of Congestion

How Is Congestion Measured (n=682)

- LOS: 20%
- Speed: 13%
- V/C: 14%
- Travel Time: 14%
- Delay: 29%
- Queue Length: 4%
- Density: 1%
- Other: 5%
Measurement of Congestion

How Is Congestion Measured (n=682)

- Travel Time: 14%
- Speed: 13%
- LOS: 20%
- Delay: 29%
- V/C: 14%
- Queue Length: 4%
- Other: 5%
- Density: 1%

“It is never truly measured.”
Accuracy & Reliability of Measurements

How Accurate Are Congestion Measures?
(n=525)

- Accurate: 18%
- Somewhat Accurate: 33%
- Inaccurate: 14%
- Unknown: 6%
- Subjective: 5%
- Relative: 4%
- Variable: 20%
Accuracy & Reliability of Measurements

How Accurate Are Congestion Measures?
(n=525)

- Accurate: 18%
- Somewhat Accurate: 33%
- Inaccurate: 14%
- Unknown: 6%
- Subjective: 5%
- Relative: 4%
- Variable: 20%

- “Reasonably accurate.”
- “Measure the wrong things.”
- “Based on personal experiences.”
- “A snapshot in time.”
Changes in Congestion

How Has Congestion Changed? (n=446)

- Worse: 79%
- Flat: 4%
- Better: 3%
- More Available Options: 6%
- Varies: 5%
- Unknown: 3%
Changes in Congestion

How Has Congestion Changed? (n=446)

- Worse: 79%
- Flat: 4%
- Better: 3%
- More Available Options: 6%
- Varies: 5%
- Unknown: 3%

- “Western cities increasing.”
- “Some rust belt cities decreasing.”
- “Drivers conditioned to tolerate more.”
- “Need to prepare for the world as it will be.”
- “Focus on accessibility.”
- “Consider options.”
Literature Review

- FHWA
 - Level at which transportation system performance is no longer acceptable due to traffic interference.
 - May vary by facility type, location and/or time of day.
- Recurrent/Nonrecurrent
- Variability
 - Duration
 - Extent
 - Intensity
 - Reliability
- Speed Thresholds
 - Minnesota: below 45 mph during peak periods
 - California: below 35 mph for 15 minutes on weekdays
 - Proposed California: below 60 mph
 - Washington: 95th percentile travel time
Point Measurements

- Top Five Bottlenecks
 (American Highway Users Alliance)
- Identified Via Survey
- Confirmed with HPMS Data
Segment Level: Point Observer

- Flow
- Capacity
- LOS
- Time Mean Speed
- Extrapolated Travel Time
- Delay
Segment Level: Spatial Observation

- Density
- Space Mean Speed
- Actual Travel Time
- Delay
Corridor Level

(a) Northbound I-5

- Cumulative Travel Time
- Cumulative Free Flow Travel Time
- Travel Time
- Free Flow Travel Time

Mean: 28:58
S.D.: 11.85
Variance: 140.35
Corridor Level

- Delay = 8 min
- 8 min < Delay < 16 min
- Delay > 16 min

Actual Travel Time - Free Flow Travel Time (min)

Time

Delay = 8 min
8 min < Delay < 16 min
Delay > 16 min
Corridor Level: Data Fusion
Consideration of Total Trip

<table>
<thead>
<tr>
<th>Segment</th>
<th>Time (min)</th>
<th>Distance (mi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>Local</td>
<td>1.5</td>
<td>0.26</td>
</tr>
<tr>
<td>Collector</td>
<td>3.4</td>
<td>0.76</td>
</tr>
<tr>
<td>Arterial</td>
<td>9.4</td>
<td>2.76</td>
</tr>
<tr>
<td>Freeway</td>
<td>23.8</td>
<td>8.76</td>
</tr>
<tr>
<td>Arterial</td>
<td>28.3</td>
<td>10.26</td>
</tr>
<tr>
<td>Park</td>
<td>30.1</td>
<td>10.51</td>
</tr>
<tr>
<td>Walk</td>
<td>36.1</td>
<td>10.61</td>
</tr>
</tbody>
</table>

Segment speed and travel time index information is also provided in the diagram.
Journey to Work Data

<table>
<thead>
<tr>
<th>Area</th>
<th>1980</th>
<th>1990</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta</td>
<td>24.9</td>
<td>26.0</td>
<td>31.2</td>
</tr>
<tr>
<td>San Jose</td>
<td>23.9</td>
<td>25.6</td>
<td>29.3</td>
</tr>
<tr>
<td>Miami</td>
<td>22.6</td>
<td>24.1</td>
<td>28.9</td>
</tr>
<tr>
<td>Ft. Lauderdale</td>
<td>22.6</td>
<td>24.1</td>
<td>28.9</td>
</tr>
<tr>
<td>Seattle</td>
<td>22.8</td>
<td>24.3</td>
<td>27.7</td>
</tr>
<tr>
<td>Orlando</td>
<td>20.3</td>
<td>22.9</td>
<td>27.0</td>
</tr>
<tr>
<td>New Orleans</td>
<td>24.5</td>
<td>24.4</td>
<td>26.7</td>
</tr>
<tr>
<td>Phoenix</td>
<td>21.6</td>
<td>23.0</td>
<td>26.1</td>
</tr>
<tr>
<td>Denver</td>
<td>22.0</td>
<td>22.4</td>
<td>25.9</td>
</tr>
<tr>
<td>Tampa</td>
<td>20.2</td>
<td>21.8</td>
<td>25.6</td>
</tr>
<tr>
<td>Sacramento</td>
<td>19.5</td>
<td>21.8</td>
<td>25.6</td>
</tr>
<tr>
<td>St. Louis</td>
<td>22.6</td>
<td>23.1</td>
<td>25.5</td>
</tr>
<tr>
<td>Baltimore</td>
<td>25.3</td>
<td>26.0</td>
<td>25.5</td>
</tr>
<tr>
<td>San Diego</td>
<td>19.5</td>
<td>22.2</td>
<td>25.3</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>22.8</td>
<td>22.6</td>
<td>25.3</td>
</tr>
<tr>
<td>San Antonio</td>
<td>20.2</td>
<td>21.9</td>
<td>24.5</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>21.8</td>
<td>22.1</td>
<td>24.5</td>
</tr>
<tr>
<td>Portland</td>
<td>21.4</td>
<td>21.7</td>
<td>24.4</td>
</tr>
<tr>
<td>Norfolk</td>
<td>21.0</td>
<td>21.6</td>
<td>24.1</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>18.9</td>
<td>20.4</td>
<td>24.1</td>
</tr>
<tr>
<td>Cleveland</td>
<td>21.6</td>
<td>22.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Indianapolis</td>
<td>20.8</td>
<td>21.9</td>
<td>23.8</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>20.1</td>
<td>21.1</td>
<td>23.7</td>
</tr>
<tr>
<td>Columbus</td>
<td>20.1</td>
<td>21.2</td>
<td>23.2</td>
</tr>
<tr>
<td>Kansas City</td>
<td>20.7</td>
<td>21.4</td>
<td>22.9</td>
</tr>
<tr>
<td>Milwaukee</td>
<td>18.8</td>
<td>20.0</td>
<td>22.1</td>
</tr>
<tr>
<td>Oklahoma City</td>
<td>20.2</td>
<td>20.3</td>
<td>22.0</td>
</tr>
<tr>
<td>Buffalo</td>
<td>19.3</td>
<td>19.4</td>
<td>21.1</td>
</tr>
<tr>
<td>Average</td>
<td>21.4</td>
<td>22.4</td>
<td>25.3</td>
</tr>
</tbody>
</table>

+14%
+18%
+18%
Metropolitan Level Mobility Measures

Portland Area Trends 1982-2002

Minneapolis Area Trends 1982-2002
Metropolitan Level Mobility Measures

Portland Freeway and PAS VMT and Lane Miles, 1982-2002

Minneapolis Freeway and PAS VMT and Lane Miles, 1982-2002
Metropolitan Level Mobility Measures

Major Road Congestion Delay, 1982-2002

Annual Hours of Delay Per Peak Period Traveler

Year

Atlanta
Baltimore
Denver
Minneapolis
Phoenix
San Diego
Seattle
St. Louis
Tampa
Other
LUA Average

CONGESTION AND ITS EXTENT 28
Metropolitan Level Mobility Measures

Trends in Travel Time, 1982-2002

Annual Hours of Travel Time Per Peak Period Traveler

Year

Phoenix
Portland
Sacramento
San Diego
San Jose
Seattle
Other
Average
Metropolitan Level Mobility Measures

Travel Time Index, 1982-2002

<table>
<thead>
<tr>
<th>Year</th>
<th>Travel Time Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
</tr>
</tbody>
</table>

TTI = Actual/Free Flow

Portland State University
Metropolitan Level Mobility Measures

Travel Time and Population 2002

Travel Time and Travel Time Index 2002

CONGESTION AND ITS EXTENT 31
Beyond Congestion Measures

Travel Time Budget

Source: Ausubel, Marchette and Meyer
Other Viewpoints

- Congestion occurs where people pursue economic and social interactions.
- Sign of healthy economy.
- Link measures to alternative mode availability.
- Impact of non-work trips in peak.
- Define the problem.
Conclusions

- Reality and perception.
- Can no longer build our way out.
- Need new methods for system performance measurement.
- Consider impacts on individual users and on individual trips (passenger and freight).
- Travel time and reliability.
Acknowledgements

- Brian Gregor, Oregon Department of Transportation
- Tim Lomax, Texas Transportation Institute
- Chris Monsere, Jennifer Dill, Jacob Bagliien
- Matt Lasky, Steve Hansen, Alex White, Aaron Breakstone, Erin Qureshi, Abram VanElswyk
- Oregon Department of Transportation
- Portland State University Center for Transportation Studies
Questions?