Analysis of Flow Features in Queued Traffic on a German Freeway

Prospectus for Dissertation Research
Roger V.F. Lindgren
Portland State University
March 2003
Introduction

- The objective of this research is to study the evolution of traffic from freely flowing to congested conditions at freeway bottlenecks located near off-ramps.
- Preliminary investigations have found that a bottleneck is formed approximately 2000 m upstream of a freeway off-ramp at a location on a German Autobahn.
- This research will contribute to the understanding of congested traffic and may lead to enhanced models and effective real-time freeway management strategies.
Background

- 50 years of freeway bottleneck studies
 - Many studies were limited to manually collected data (direct observation, air photos) with short duration and limited length
 - Others studies were plagued by limitations of the data processing methods (flow vs. time and velocity vs. time plot)
 - Recently, there have been a limited number of successful studies of Canadian, British, and US freeways employing more robust data analysis methods – none on German freeways
Current German Freeway Analyses

- Measured variables (velocity and flow) exhibit statistical variations as well as time-dependent changes.
- This plotting technique makes it difficult to distinguish between the two.
- 3-D plotting technique allows for coarse identification of flow features.
Now, it turns out if the data are processed carefully and properly, key features related to a freeway bottleneck can be diagnosed. An *active* bottleneck exists when upstream traffic is queued and downstream traffic unqueued. Deactivated when there is either a decrease in flow or when a queue spills back from a downstream bottleneck.
Methodology

- Properly transformed curves of vehicle arrival number vs. time and time-averaged velocity vs. time provide the fidelity required to identify key time-dependent traffic features related to bottlenecks.
Construction of cumulative count, $N(x, t)$, plots
Shifted $N(x,t)$

Direction of Travel

$N(x,t)$

$N(x_1,t)$

$N(x_2,t)$

Trip Time

Accumulation

Time, t
Data revealed from shifted $N(x,t)$
Study Site
Autobahn A5, Frankfurt am Main, Germany

- A “speed trap” of two inductive loops gives vehicle counts, lengths and speeds
- The study site is a 30 km portion of the A5 north of Frankfurt am Main, Germany
- Research partnership with the Technical University at Dresden
Reveals the general location of the bottleneck
Reveals approximate duration that the bottleneck remains active
Resolution remains coarse, therefore useful only with a high-resolution technique such as cumulative plotting
Shifted $N(x,t)$ constructed from A5 data
Shifted $N(x,t)$ with q_o
Oblique $N(x,t)$ & $V(x,t)$
Tracing the queue

\[N(X,t) - q(t-t), q = 4,800 \text{ vph} \]
Extent of the queue

N(x(t), q(t)), q = 4,520 vph

Time, t @ D17
Queue discharge features

\[N(D22) = q(t-t_0), \quad q = 4375 \text{ vph} \]

- 4723 vph
- 4166 vph

Time, \(t \) @ D22
Lane-by-Lane Analysis

LEFT LANE

- Time of Bottleneck: Activation
- N(x,t) - q(t-t), q = 1,070 vph

MIDDLE LANE

- Time of Bottleneck: Activation
- N(x,t) - q(t-t), q = 1,070 vph

RIGHT LANE

- Time of Bottleneck: Activation
- N(x,t) - q(t-t), q = 1,070 vph
Research Schedule

<table>
<thead>
<tr>
<th>MONTH</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Review</td>
<td></td>
</tr>
<tr>
<td>Data Preparation</td>
<td></td>
</tr>
<tr>
<td>Prelim. Data Analyses</td>
<td></td>
</tr>
<tr>
<td>Final Data Analyses</td>
<td></td>
</tr>
<tr>
<td>Dissertation</td>
<td></td>
</tr>
</tbody>
</table>
Preliminary data analysis

- Examine the full 30 km data set
- Describe the evolution of traffic flow for a full day
- Examine the influence of ramp flows, lane-changing, and truck flows on bottleneck formation
Final data analysis

- Examine multiple days’ data to check for reproducibility
- Compare results to Daganzo’s behavioral traffic flow theory and Mauch’s stop-and-go wave findings
- Model the freeway both microscopically and macroscopically and compare model results to empirical data
- Compare to other research findings
- Make data available for other researchers
Contributions

- Add to the understanding of bottleneck features
- Aid to freeway managers ability to predict and the formation of queues
- Allow for testing of traffic flow theories
- Provide an independent assessment of other research (Kerner)