
Chris Monsere, Ph.D., P.E.
Research Assistant Professor
Portland State University
Department of Civil and Environmental Engineering
monsere@pdx.edu

Tom Moes
Graduate Research Assistant
Portland State University
School of Urban Studies & Planning
Center for Transportation Studies
moest@pdx.edu
Outline

- CSTSP Background
- Program Areas
- Why measure?
- How are others measuring?
- How to measure for CSTSP?
- Conclusions
CSTSP Background

- Strong community support
- 2002 - Safe Communities Coalition formed with grant from Oregon DOT
- July 2003 - Portland City Council approved the Portland Traffic Safety Coordination Council
- November 2003 - Community and School Traffic Safety Account created
 - Source: Annual increase in traffic fines
CSTSP Organizational Structure

- Portland Traffic Safety Coordination Council
 - "Leadership Group"

- Portland Safe Communities Coalition
 - "Community Stakeholders and Service Providers"

- Reducing Driver Error
 - TAC

- Pedestrian and Bicycle Safety
 - TAC

- Safe Routes to School
 - TAC

- Research and Evaluation Group
 - "Analytical Support"
Reducing Driver Error

Goal – Reduce traffic injuries and fatalities related to driver error

Strategy
- Red light running cameras
- Photo radar
- Traffic calming
- Speeding
- Occupant protection
- DUII
- Comprehensive education
Pedestrian and Bicycle Safety

Goal – Improve safety for pedestrians and bicyclists and foster better cooperation with auto drivers.

Strategy
- Enforcement partnership
- Pedestrian island partnership
- Capital improvement projects
- Share the road/ambassador program
Safe Routes to School

Goal – Increase safety in school zones and encourage walking and biking activity

Strategy
- Engineering improvements
- Maps and website for education
- Photo radar & speed reader
- Pilot programs
Distribution of Program Resources

- Engineering: 38%
- Enforcement: 38%
- Education: 20%
- Research and Evaluation: 4%

Total $2.5 million
Why measure?

- Direct link to program goals
- Prioritization of strategies
- Allocation of funds
- Accountability
- Communication
How are others measuring safety?

• State
 – Use primarily crash data
 – Safety performance measures are basic
 – Most are used to evaluate highway safety programs
 – Examples
 • Washington DOT “Gray Notebook”
 • Wisconsin DOT “Pedestrian, Bicycle & Pupil Transportation Safety”
How are others measuring safety?

• Regional
 – MPOs partnering with DOTs to develop multimodal long-range transportation plans
 – Implementing more “system” performance measures
 – Not easy to incorporate or measure safety
How are others measuring safety?

• Local
 – Safe Communities Programs
 • Not many performance measures
 – Safe Routes to School (SR2S)
 • Implemented SR2S programs in +- 20 U.S. states
 • Most SR2S are local programs
 • Some related performance measures
Performance Measure Criteria

- Clearly related to defined outcomes
- Measurability
 - Simple, available and quantifiable data
- Captures temporal issues
- Available at needed spatial detail
CSTSP Performance Measurement Plan

• Map desired outcomes for each program strategy

• Identify
 – Measures of outcomes
 – Measures of investment
 – At city, neighborhood or corridor aggregation
 – No plans to measure each “strategy”

• Review existing data and suggest new sources
Mapping Outcomes – Driver Error

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Eng</th>
<th>Educ</th>
<th>Enfor</th>
<th>Desired Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Light Running</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Angle and intersection crashes</td>
</tr>
<tr>
<td>Photo Radar</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Speeding on residential streets and crashes</td>
</tr>
<tr>
<td>Res. Purchase Project</td>
<td>X</td>
<td></td>
<td></td>
<td>Speeding on residential streets and crashes</td>
</tr>
<tr>
<td>Speed Awareness</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Speeding and related crashes</td>
</tr>
<tr>
<td>DUII</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Driving under the influence crashes</td>
</tr>
<tr>
<td>Occupant Protection</td>
<td></td>
<td>X</td>
<td>X</td>
<td>Crashes related to seat belt use</td>
</tr>
</tbody>
</table>
Sample Outcome Measures – Driver Error

• Red light running
 – Angle crashes at intersections
 – Public awareness of red light running

• Photo radar
 – Speed-related crashes (all, residential)
 – Complaints to 503-SAFE
 – Incorporate into citizen survey

• Enforcement
 – Seat belt crashes and injuries

• Education
 – Driver error crashes by age
Sample Investment Measures – Driver Error

• Engineering
 – Number of cameras operating
 – Miles of street calmed
 – Dollars of investment in construction

• Enforcement
 – Number of citations issued
 – Number of enforcement hours
 – Hours of red light camera operating
 – DUII enforcement hours

• Education
 – Number of media events
Example - Intersections
Conclusions

• Performance measures are useful for communication, accountability and program development

• Measuring multimodal safety is challenging
 – Selecting performance measure set is key
 – Will need research
 – Data challenges

• Matching outcomes and investment should allow program modification
Conclusions

• Next steps
 – Need to assemble data sources
 – Research appropriate normalizing measures for outcome and investments

• After conducting annual reports, may need to amend performance measures
Thank You – Questions?

Acknowledgements:
Robert L. Bertini (PSU), Rob Burchfield, Mark Lear, Dakota Inyoswan (PDOT)

Chris Monsere, Ph.D., P.E.
Research Assistant Professor
Portland State University
Department of Civil and Environmental Engineering
monsere@pdx.edu

Tom Moes
Graduate Research Assistant
Portland State University
Center for Transportation Studies
moest@pdx.edu