Multi-Criteria Trucking Freeway Performance Measures for Congested Corridors

Presented By: Nikki Wheeler

Thesis Committee

Dr. Miguel Figliozzi
Dr. Christopher Monsere
Dr. Ashley Haire

Portland State University

8-12-2010
Introduction

• **Delay and Congestion Impact Freight Industry**
 - Timely deliveries
 - Increase in emission
 - Increase in cost
 - Difficulty scheduling

• **Early focus on passenger vehicles**
 - Current measures may not meet needs of all users (e.g., loop sensors)
 - Better understanding of Freight reliability = Better planning/engineering
Outline

• Background/Context of Problem
• Description of Data Sources
• Methodology
• Case Study Results
 • Recurring Congestion
 • Non-Recurring Congestion
• Conclusions
Background

Performance Measures
- Tools to evaluate current/future needs
- Travel time, speed, delay, & travel time reliability

Sources of Data & Focus of Current Research
- Loop Sensors
- Electronic Truck Transponders (Weigh-in-Motion)
- GPS technologies
Unique Contributions of this Work

OBJECTIVES:

• Combining Multiple Data Sources
 • GPS data from commercial trucks
 • Loop sensor data (Oregon DOT)
 • Incident data (ODOT ATMS)

• Create unbiased FPM
 • Separating trucks experiencing congestion vs rest/refuel
 • Develop alternatives to current PM

• Develop Multiple Criteria for Evaluating Freight Performance
 • Travel Time, Delay & Reliability
 • Freight Vehicle Emissions
 • Freight Vehicle Costs

Portland State University
Description of Data Sources Available

• PORTAL (SEE: http://portal.its.pdx.edu)
 • Loop Sensor Data from ODOT

• Incident Data
 • Type, Severity, Approximate location, Start/End time (duration)

• GPS Truck Data
 • TruckID number, Date, Time
 • Position (Latitude/Longitude)

• Data Challenges
 • No common gap time btw readings
 • Multiple trips on same day
 • Different truck types (travel behavior)
Description of Data Sources Available cont.

- **GPS Truck Types**
 - **Through**
 - **Partial Through**
 - **Partial Local**
 - **Local**

- Develop Filter to ID Through Trucks
- Best Representation of Corridor Congestion
- Use Through Trucks to develop FPM
Methodology to Identify Through Trucks
• Purpose of Filter: To Identify Through Trucks for analysis

• Two Step Process:
 • Filter Process 1: Matching GPS Readings to Identify Potential Through Trucks
 • Filter Process 2: Comparison to PORTAL Average Travel Times
 • Integrates available data sets and ensures no stops midway for rest/refuel

Filter Parameters

- \(m_s \) = Start Milepost
- \(m_e \) = End Milepost
- \(r \) = Buffer radius
- \(t_b \) = Threshold to clear buffer
- \(t_c \) = Threshold to clear corridor and buffer
Filter Process 1: Matching GPS Readings to Identify Potential Through Trucks

1. Obtain milepost measures using ArcGIS
2. Determine m_s and m_e
3. Look at points falling in buffer ranges
4. Distinguish individual trips by each truck using time thresholds t_c and t_b and identify the “start” and “end” points of each trip
5. Match readings in “start” buffer to downstream reading in “end” buffer occurring within t_c

Methodology cont.

Corridor Length $= |m_e - m_s|$
Filter Process 1: Matching GPS Readings to Identify Potential Through Trucks

6. Find all intermediate readings for a truck ID falling between the trip “start” and “end” readings

7. Adjust the “start” and “end” reading timestamp and milepost to begin at m_s and m_e using speeds obtained from the next closest reading

8. Obtain the travel time and speed through the corridor, and identify trip direction using milepost data
Filter Process 2: Comparison to PORTAL Average Travel Times

1. Data sorted by the “start” reading timestamp into time bins of 15 minute intervals.

2. Deviation Index is calculated using the PORTAL:
 For a 15 minute time bin t,
 Then the Deviation Index g_k is defined as
 \[g_k = \frac{|a_t - T_k|}{\sigma_t} \]
 Where:
 $a_t =$ PORTAL average travel time at time bin t
 $\sigma_t =$ PORTAL day-to-day standard deviation of travel time
 $T_k =$ the corridor average travel time for truck trip k

3. Truck trip is too far from the expected average if:
 \[g_k > m \ast \sigma_t \]
 Where:
 $m =$ a user defined parameter
Filter Process 2: Comparison to PORTAL Average Travel Time

Through Truck vs PORTAL Corridor Average Travel Time

*Results following filter process 1, showing Deviation Index.
Methodology cont.

Filter Process 2: Comparison to PORTAL Average Travel Time

Through Truck vs PORTAL Corridor Average Travel Time

*Results following filter process 2, showing Deviation Index
Recurring Congestion Analysis
Recurring Congestion

- I-5 NB
- Wilsonville, OR to Vancouver, WA
- 31.75 miles
- Jan-Dec, 2007 (weekdays)
Results: Recurring Congestion

Through Truck vs PORTAL Corridor Average Travel Time
*Results following filter process 2, showing Aggregated Data and Std Err

- Portal Jan to Dec 2007
- GPS Through Jan to Dec 2007
Results: Recurring Congestion

Summary of Findings:
- Loop Sensors tend to underestimate congestion in PM peak period
- Std Err indicates less reliability in PM peak period

Through Truck vs PORTAL CV in Corridor Average Travel Time
Results following filter process 2, showing Aggregated Data, Smoothed
Using Recurring Congestion Travel Time Results, We Can Estimate:

- Freight Vehicle Costs
- Freight Vehicle Emissions
Recurring Congestion Cost Results
Estimating Freight Vehicle Costs

• **Freight Value of Time (VOT)**
 - Different than passenger vehicles
 - Variations in VOT ($/hr)
Estimating Freight Vehicle Costs

- **Freight Value of Time (VOT)**

- **Monetizing Using Freight VOT**
 - Texas Transportation Institute
 - Urban Mobility Report
 - Basic Formulation
 - Incorporating Travel Time Variability

TTI, 2009

<table>
<thead>
<tr>
<th>Daily Freight Vehicle Cost</th>
<th>Daily Freight Vehicle-Hours of Delay</th>
<th>Daily Freight Vehicle Volume</th>
<th>Freight VOT ($/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq1:</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cohen, 2000

<table>
<thead>
<tr>
<th>Daily Freight Vehicle Cost</th>
<th>Daily Freight Vehicle-Hours of Delay</th>
<th>Travel Time Variability</th>
<th>Daily Freight Vehicle Volume</th>
<th>Freight VOT ($/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq2:</td>
<td>(</td>
<td>a₂ *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Estimating Freight Vehicle Costs

• Freight Value of Time (VOT)

• Monetizing Using Freight VOT

• Monetizing Using Operating Cost
 • Cost to operate truck for one hour (CPH)
 • Marginal operating costs impacted by roadway conditions
 • ATRI 2010 study derived CPH = $83.68/hr

Operating Costs

Driver Costs
• driver wages
• driver benefits
• driver bonuses

Vehicle Costs
• fuel and engine oil
• truck/trailer lease or purchase
• repair and maintenance
• fuel taxes
• Insurance
• tires
• licensing and permits
• tolls
Estimating Freight Vehicle Costs

- Freight Value of Time (VOT)
- Monetizing Using Freight VOT
- Monetizing Using Operating Cost
- Compare to Costs During Congestion to Costs During Free-Flow Conditions
 - 52.05 mph; conservative
 - Accepted industry average (ATRI 2010)

VS
Results: Percent Increase Above Free-Flow

Percent Increase in Cost of Freight Vehicle-Hours of Delay Per Mile Relative to 52.05 mph Free-Flow Travel Time

% Increase in Daily Cost of Delay Above Free-Flow Conditions

- CPH and VOT
 - Variability: 19%
- Variability: 22% (low end)
- Variability: 31% (high end)
Results: Summary of Costs Per Mile

Ten cost scenarios to quantify $/mile above cost during Free-Flow conditions

- **Operating Cost Per Mile**
 - $1,909/mile

- **Range of VOT and Cost Formulations**
 - $576/mile—costs by operator type
 - $2,551/mile—regional VOT, congestion markup and variability

- **Recommendations for Estimating Costs**
 - VOT should represent region & impact of congestion
 - VOT by operator or service type not recommended
Recurring Congestion
Emissions Estimation
Estimating Freight Vehicle Emissions

• Emissions and Air Pollutants

Mobile Source Air Toxics (MSAT)
- Acrolein
- Benzene
- 1,3-butadiene
- Diesel particulate matter
- Formaldehyde
- Naphthalene
- Polycyclic organic matter

Criteria Pollutants (CP)
- Ozone (O3)
- Particulate matter (PM)
- Nitrogen oxides (NOx)
- Lead (Pb)
- Sulfur dioxide (SO2)
- Carbon monoxide (CO)

Greenhouse Gases (GHG)
- Carbon Dioxide (CO2)
- Nitrous Oxide (N2O)
Estimating Freight Vehicle Emissions

• Emissions and Air Pollutants

• Factors Contributing to Freight Vehicle Emissions
 • Vehicle Size & Weight
 • Roadway Grade
 • Speed & Acceleration

From Barth & Boriboonsomsin, 2009
Estimating Freight Vehicle Emissions

• Emissions and Air Pollutants

• Factors Contributing to Freight Vehicle Emissions

• Estimating Emissions
 • EPA’s MOVES 2010
 • GHG, MSAT, CP
 • Project Level Analysis
Results: Percent Increase Above Free-Flow

GHG

Carbon Dioxide (CO2)
Nitrous Oxide (N2O)

CP

Total PM 10; Total PM 2.5
Oxides of Nitrogen (NOx)
Sulfur Dioxide (SO2)

MSAT

1,3-Butadiene;
Acetaldehyde;
Acrolein;
Benzene

Freight Vehicle-Hours of Delay Per Mile

Relative to Free-Flow Travel Time
Results: Summary of Emissions (g/mile)

Emission Rates Above Free-Flow Emissions

- **CO2**
 - 24,099 g/mile daily
 - 50% daily increase

- **NOx**
 - 138 g/mile daily
 - 65% daily increase

- **PM 10 & PM 2.5**
 - 3.78 g/mile daily
 - 13% daily increase
Non-Recurring Congestion Analysis
Case Study: Non-Recurring Congestion

Non-Recurring Congestion Scope:
- Similar Methodology,
- 5-mile segment near incident
 - Incident Area
- Downstream Incidents

Purpose of Study:
1. Comparison btw Through-Incident Trucks And Partial-Through/Local
 Incident Area A: I-5 NB near Going St.
2. Impact of Incident on Freight Vehicle Travel Time, Costs, and Emissions
 Incident Area B: I-5 NB near Corbett Ave.
Non-Recurring Congestion Analysis:
Comparison btw Through-Incident Trucks
And Partial-Through/Local
Results: Incident Area A, Through-Incident

Through-Incident Truck Average Travel Time Crossing Incident Area A

*Results following filter process 2

- Portal Jan-Dec 2007
- Portal Incident Day Dec 12th 2008
- Through-Incident Trucks Dec 12th 2008
Results: Incident Area A, Partial-Thru/Local

Summary of Findings:
- Downstream incidents have effect
- Smaller Std Err with truck data using Through-Incident only
- Supports that bias exists when partial/local movements included
- Few samples, difficult to look at reliability measures

Partial-Through/Local Truck Average Travel Time Crossing Incident Area A

*Results following filter process 2
Non-Recurring Congestion Analysis:
Impact of Incident on Freight Vehicle
Travel Time, Costs, and Emissions
Results: Incident Area B, Through-Incident

Through-Incident Truck Average Travel Time Crossing Incident Area B

*Results following filter process 2

Travel Time (min)

- Portal Jan-Dec 2007
- Portal Incident Day Jun 8th 2007
- Through-Incident Trucks Jun 8th 2007

Time of Day

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

B-1, B-2
Results: Incident Area B, Costs & Emissions

<table>
<thead>
<tr>
<th>Costs—Regional VOT and 2.5 Congestion Markup</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $416 per mile (94% inc. above free-flow conditions)</td>
</tr>
<tr>
<td>• $366 per mile (74% inc. above recurring conditions)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emission Rates During Incident Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Emissions During Free-Flow Conditions</td>
</tr>
<tr>
<td>• CO2</td>
</tr>
<tr>
<td>• 3110 g/mile</td>
</tr>
<tr>
<td>• 95% increase</td>
</tr>
<tr>
<td>• PM 10 & PM 2.5</td>
</tr>
<tr>
<td>• 0.67 g/mile daily</td>
</tr>
<tr>
<td>• 93% daily increase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 16.08 g/mile daily</td>
</tr>
<tr>
<td>• 128% increase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 0.01 g/mile daily</td>
</tr>
<tr>
<td>• 70% daily increase</td>
</tr>
</tbody>
</table>
Summary of Findings
Conclusions

• Integrated GPS, loop sensor and incident data

• New methodology to identify local and through trucks
 • Remove bias of trucks resting/refueling
 • Through trucks best indicator of congestion
 • Indications that loop sensor data may underestimate congestion in PM peak
 • Non-recurring congestion analysis points to bias if partial-through/local trucks included in analysis

• Successful application of methodology in both recurring and non-recurring conditions, although less data for incident days
Conclusions Cont.

Freight performance measures derived can be used to quantify:

- **Freight Vehicle Costs Using Standard Methods**
 - Wide range of VOT—regional and congestion factor
 - Including variability is important, particularly for freight
 - VOT by operator/service type not recommended

- **Freight Vehicle Emissions Using EPA’s MOVES 2010 Model**
 - Quantify GHG, MSAT and CP emissions
 - Allows for consideration of environmental and health impacts
 - Results could be used in a dispersion model

- **Methodology and Case Studies provide guidance**

- **Useful to both public agencies and freight carriers**
Acknowledgements

• Dr. Figliozzi, Dr. Monsere and Dr. Haire

• Jeffrey Short from the American Transportation Research Institute

• Oregon Transportation, Research and Education Consortium (OTREC) and FHWA

• Shreemoyee Sarkar, Computer Science, PSU

Thank you all for attending!!
Questions??

Nikki Wheeler nicole.m.wheeler@gmail.com
Dr. Miguel Figliozzi figliozzi@pdx.edu
References

References

References

References

